Lean Management Certification Training Course

Lean Management Certification Training Course

Attention manufacturers! Gain the confidence to reduce waste and increase productivity in just three days with our Lean Manufacturing Training Course.

Our expert trainers will guide you through the ins and outs of lean manufacturing, showing you how to optimize your processes for maximum efficiency. No longer will you have to worry about wasted time and materials, as our course will equip you with the skills to make every aspect of your manufacturing process count.

You have the power to revolutionize your company’s output, and with our course, you can do it with confidence. Don’t miss this opportunity to take your manufacturing to the next level. Enroll now in our Lean Manufacturing Training Course.

Questions, please call 24/7 888-632-2093.

  • Learn industry-recommended lean manufacturing procedures and best practices.
  • Receive training from a lean professional with 30+ years of experience.
  • Four ways to learn: public classwebinarself-study, or on-site training.
  • Public class and webinar limited to four students for maximum learning.
  • Certificate issued on completion.
  • Cost: Three-day class $1,999.00.
  • Available discounts and grants.

Lean Manufacturing Training Course Description

What will I learn in Lean Management Certification Training?

Module One: Continuous Improvement Tools

Asian culture has had a significant impact on the rest of the world. Within the business environment, Japan has contributed greatly to the language of business with numerous concepts that represent con­tinuous improvement tools (kaizen tools) and with production philos­ophies such as just-in-time. Just-in-time (JIT) philosophy is also known as lean manufacturing. In this first module, both of these production philosophies will be discussed.

Another important philosophy studied in this course is the concept developed by a Japanese consultant named Kobayashi. This concept is based on 20 keys leading businesses on a course of continuous improvement (kaizen). These 20 keys also will be presented in this module.

Finally, in this introductory module, the production core elements will be presented to focus on improvement actions, and a resource rate to measure improvement results is also explained.

In this module, you will learn about continuous improvement, improvement philosophies and methodologies,

Continued after outline and schedule…

Lean Manufacturing Training Course Outline

Module 1 Continuous Improvement Tools

  • Continuous Improvement
  • Improvement Philosophies and Methodologies
    • Just-In-Time (JIT)
    • Thinking Revolution
    • Lean Manufacturing
  • 20 Keys to Workplace Improvement
  • Measuring and Prioritizing the Improvements

Module 2 Material Flow and Facilities Layout

  • Layout Improvement
    • Signs and Reasons for a Need to Change the Layout
  • Theoretical Basis
    • One-Piece Flow
    • Main Types of Industrial Companies
    • Layout Types
    • Characteristic of the Traditional Layouts
  • Layout Design Methodology
    • Step 1 Formulate the Problem
    • Step 2 Analysis of the Problem
    • Step 3 Search for Alternatives
    • Step 4 Choose the Right Solution
    • Step 5 Specification of the Solution
    • Step 6 Design Cycle
  • Tools for Layout Study
    • Muther’s 8 Factors

Continue Reading

Lean Manufacturing Training Course Public and Webinar Schedule

  • Wed., Thurs., and Fri., January 10 – 12, 2024 Full
  • Wed., Thurs., and Fri., January 17 – 19, 2024 Full
  • Wed., Thurs., and Fri., January 31 – February 2, 2024
  • Wed., Thurs., and Fri., February 7 – 9, 2024 Full
  • Wed., Thurs., and Fri., March 6 – 8, 2024
  • Wed., Thurs., and Fri., April 3 – 5, 2024
  • Wed., Thurs., and Fri., May 1 – 3, 2024
  • Wed., Thurs., and Fri., June 5 – 7, 2024

Scheduled dates don’t work for you? Schedule your own start date (subject to availability).  Contact customer service to check date availability at info@academyofbus

Continued from above…

Just-In-Time (JIT), and measuring and prioritizing the improvements.

Module Two: Material Flow and Facilities Layout

Several productivity metrics, such as throughput and lead time, are directly affected by where and how the processing and storage resources are located in a factory. In this module, you will learn about the different types of industrial processes and plant layouts.

Plant layout (changes in resources or even factory location) is an activity that all companies are forced to deal with sooner or later. These situations occur because of technology innovations, increases in de­mand, and certain other productivity reasons. Therefore, it is important to be familiar with the methodologies used to carry out these studies.

Cellular layouts, where labor and machines are grouped in cells, will be presented in this module because they are becoming increas­ingly important and require specific methodologies. Cellular layouts will be explained in greater depth in Module Three.

In this module of lean manufacturing certification, you will learn about layout improvement and its theoretical basis, layout design methodology, and tools for layout study.

Module Three: Material Flow and the Design of Cellular Layouts

In Module Two of lean manufacturing certification, the concept of manufacturing cells was presented as a specific case of the product/process layout. The basic analysis neces­sary to transform a traditional factory into a cellular layout requires a unique development and implementation methodology. Because of this difference in layout analysis and philosophy, a separate module on cel­lular design and analysis is used for this important topic.

The use of cells creates a unique set of production modules. The plant’s division into cells exclusive to producing a product family transforms the factory into a group of self-managed sub factories or modules. This module presents some design and analysis tools fo­cused on getting a company ready to progress to cellular manufactur­ing.

When a production line is being designed, it is important to distribute the needed manufacturing tasks within the workstations as best as pos­sible. One always should avoid any unneeded workstations so that task distribution can be well defined and developed and lead time can be reduced, along with work-in-process and labor costs. In this module, line-balancing techniques will be explained and developed.

In this module, you will learn about the assembly line and its theoretical basis and cell design methodology.

Module Four: Equipment Efficiency: Quality and Poka-Yoke

Shigeo Shingo developed a system to improve inspection tasks to guarantee 100 percent quality for manufactured parts, leading toward a defects-free process. This module will explain in­spection processes based on unnoticed mistake-proving devices (called poka-yoke). This type of inspection strategy complements statistical process control (SPC) and is used primarily for inspecting logical fea­tures.

Poka-yokes are visual and physical tools used in con­junction with source inspection (a concept also created by Shingo) for the two techniques to be effective. Source inspection also will be presented in this module.

In this module, you will learn about poka-yokes and their theoretical basis and poka-yoke design methodology.

Module Five: Equipment Efficiency: Performance and Motion Study

This module will examine the second equipment efficiency indi­cator based on two factors: equipment performance losses due to stoppages (usually not registered) and equipment performance reduction caused by equipment component deterioration or wear. In Module Seven, we will study equipment availability (setup reduction) and quality related to startup.

Small breakdowns or device (fixture and tooling) holdups are re­sponsible for these machine stoppages. In other cases, an improper adjustment or interaction between the worker and the machine cycle also can create problems.

Time and motion study allows one to optimize the relationship be­tween the worker and the machine and investigate whether the worker can tend to more than one machine in those cases where the machine cycle is significantly longer than the worker cycle.

The main tools presented in this module are worker-machine and machine-machine diagrams. These tools help us study the relation­ship between worker and machine cycles (or between machines), eliminating or reducing idle time and optimizing the working cycle.

In this module, you will learn about motion study and its theoretical basis and motion study tools.

Module Six: Equipment Efficiency: Availability, Performance, and Maintenance

The role of maintenance is to ensure the proper func­tioning of all company hardware. Most companies consider their maintenance departments a nec­essary evil or a money pit that represents an ongoing cost. Managing a maintenance department can be nearly impossible because the investments required to improve production processes usually take on a low priority or, even worse, may not even make it to the priority list for capital expenditures.

Maintenance evolution and maintenance techniques evolution have been developed in parallel for many companies: The maintenance department’s first obligation is to remediate hardware failures that have occurred already. The next obligation after fixing breakdowns is to prevent future problems with the equipment that eventually may lead to failure.

The most advanced maintenance management companies try to incorporate basic maintenance tasks into their daily production routine with direct labor personnel checking fluid levels and examining production equipment for potential failure mechanisms, also searching for ways to increase the ability to predict potential equipment break­downs.

In this module, you will learn about equipment maintenance and its theoretical basis, maintenance program implementation, and maintenance tools.

Module Seven: Equipment Efficiency: Availability, Quality, and SMED

It has become increasingly important to manufacture products econom­ically in smaller and smaller batches. New manage­ment philosophies demand product lead times (both development and then manufacturing times) be kept as small as possible. Product customization has increased, increasing the number of parts in a product family. As a result, batch sizes have been reduced and continue to shrink.

In this context, companies should be as agile and flexible as possible. Part of the required agility is to reduce machine setup times to minutes instead of hours. Unless setup time can be reduced significantly, it will be difficult to produce small batches and reduce lead time economi­cally.

The single-minute exchange of dies (SMED) methodology, as it is called, is a clear, easy-to-apply methodology that has produced good results in many cases very quickly and amazing results in some other cases. Shigeo Shingo developed the SMED methodology in Japan from 1950 to the 1980s. With this methodology, it is possible to achieve good results without costly investments, which makes imple­mentation in many factories an easy decision to make,

In this module, you will learn the setup process and its theoretical basis, SMED methodology, SMED tools, and SMED effects and benefits.

Module Eight: Environmental Improvements and the 5S Methodology

The third area analyzed in this course is the work environ­ment and how it can be improved. The number of implementation projects based on a 5S methodology has increased significantly in the last decade. This methodology’s name corresponds to the initial letters of five Japanese words (also five Eng­lish words)  based on sort, organize, and clean.

However, the main objective of the 5S tool is to educate workers and encourage an attitude that supports worker habits. These habits will allow workers to maintain the work environment orderly (sorted, organized, and clean) with little effort. The ideas used in this methodology are simple, and most of them are based on com­mon sense. However, in most companies, these procedures of organi­zation and cleaning are not adhered to as well as they should be.

In this module of lean manufacturing certification, you will learn about clean and organized workspaces, 5S implementation methodology, implementation of the 5S in offices, 5S tools, and 5S benefits and effects.

Module Nine: Other Improvement Keys

In previous modules, different improvement tools that can be used to solve many production problems were discussed, illustrated, and ana­lyzed. These tools are included in the course 20 Keys to Workplace Improvement, but not all 20 keys have been explained. The rest of the keys can be grouped into four categories:

  1. Human resources
  2. Efficient materials use
  3. Visual control
  4. Technology

In this module, you will learn about human resources-related keys, visual control-related keys, and technology-related keys.